{ "id": "math/0605063", "version": "v2", "published": "2006-05-02T14:55:12.000Z", "updated": "2006-05-03T08:15:10.000Z", "title": "Local Riemann Hypothesis for complex numbers", "authors": [ "Rikard Olofsson" ], "categories": [ "math.NT" ], "abstract": "In this paper a special class of local zeta functions is studied. The main theorem states that the functions have all zeros on the line Re (s)=1/2. This is a natural generalization of the result of Bump and Ng stating that the zeros of the Mellin transform of Hermite functions have Re (s)=1/2.", "revisions": [ { "version": "v2", "updated": "2006-05-03T08:15:10.000Z" } ], "analyses": { "subjects": [ "11M41" ], "keywords": [ "local riemann hypothesis", "complex numbers", "local zeta functions", "main theorem states", "hermite functions" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2006math......5063O" } } }