{ "id": "math/0605035", "version": "v1", "published": "2006-05-01T10:17:32.000Z", "updated": "2006-05-01T10:17:32.000Z", "title": "Two-Dimensional Critical Percolation: The Full Scaling Limit", "authors": [ "Federico Camia", "Charles M. Newman" ], "comment": "45 pages, 12 figures. This is a revised version of math.PR/0504036 without the appendices", "doi": "10.1007/s00220-006-0086-1", "categories": [ "math.PR", "cond-mat.stat-mech", "math-ph", "math.MP" ], "abstract": "We use SLE(6) paths to construct a process of continuum nonsimple loops in the plane and prove that this process coincides with the full continuum scaling limit of 2D critical site percolation on the triangular lattice -- that is, the scaling limit of the set of all interfaces between different clusters. Some properties of the loop process, including conformal invariance, are also proved.", "revisions": [ { "version": "v1", "updated": "2006-05-01T10:17:32.000Z" } ], "analyses": { "subjects": [ "82B27", "60K35", "82B43", "60D05", "30C35" ], "keywords": [ "full scaling limit", "two-dimensional critical percolation", "2d critical site percolation", "full continuum scaling limit", "continuum nonsimple loops" ], "tags": [ "journal article" ], "publication": { "publisher": "Springer", "journal": "Communications in Mathematical Physics", "year": 2006, "month": "Nov", "volume": 268, "number": 1, "pages": 1 }, "note": { "typesetting": "TeX", "pages": 45, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2006CMaPh.268....1C" } } }