{ "id": "math/0605022", "version": "v1", "published": "2006-04-30T14:07:30.000Z", "updated": "2006-04-30T14:07:30.000Z", "title": "A connection between decomposable ultrafilters and possible cofinalities. II", "authors": [ "Paolo Lipparini" ], "comment": "6 pages", "journal": "Published as \"Decomposable ultrafilters and possible cofinalities\" on Notre Dame Journal of Formal Logic 49, 307--312 (2008).", "categories": [ "math.LO", "math.GN" ], "abstract": "We use Shelah's theory of possible cofinalities in order to solve a problem about ultrafilters. THEOREM. Suppose that $ \\lambda $ is a singular cardinal, $ \\lambda ' < \\lambda $, and the ultrafilter $D$ is $ \\kappa $-decomposable for all regular cardinals $ \\kappa $ with $ \\lambda ' < \\kappa < \\lambda $. Then $D$ is either $ \\lambda $-decomposable, or $ \\lambda ^+$-decomposable. We give applications to topological spaces and to abstract logics.", "revisions": [ { "version": "v1", "updated": "2006-04-30T14:07:30.000Z" } ], "analyses": { "subjects": [ "03C20", "03E04", "03C95", "54D20" ], "keywords": [ "decomposable ultrafilters", "cofinalities", "connection", "shelahs theory", "singular cardinal" ], "tags": [ "journal article" ], "note": { "typesetting": "TeX", "pages": 6, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2006math......5022L" } } }