{ "id": "math/0604491", "version": "v1", "published": "2006-04-23T09:10:49.000Z", "updated": "2006-04-23T09:10:49.000Z", "title": "Portmanteau theorem for unbounded measures", "authors": [ "Matyas Barczy", "Gyula Pap" ], "comment": "6 pages, To appear in Statistics & Probability Letters", "journal": "Statistics & Probability Letters, Vol. 76, Issue 17, 2006, 1831-1835.", "categories": [ "math.PR", "math.CA" ], "abstract": "We prove an analogue of the portmanteau theorem on weak convergence of probability measures allowing measures which are unbounded on an underlying metric space but finite on the complement of any Borel neighbourhood of a fixed element.", "revisions": [ { "version": "v1", "updated": "2006-04-23T09:10:49.000Z" } ], "analyses": { "subjects": [ "60B10", "28A33" ], "keywords": [ "portmanteau theorem", "unbounded measures", "probability measures", "borel neighbourhood", "underlying metric space" ], "tags": [ "journal article" ], "note": { "typesetting": "TeX", "pages": 6, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2006math......4491B" } } }