{ "id": "math/0604471", "version": "v1", "published": "2006-04-21T19:14:39.000Z", "updated": "2006-04-21T19:14:39.000Z", "title": "A Combinatorial Interpretation of j/n {kn}\\choose{n+j}", "authors": [ "David Callan" ], "comment": "Latex, 7 pages, 5 figures", "categories": [ "math.CO" ], "abstract": "The identity j/n {kn}\\choose{n+j} =(k-1) {kn-1}\\choose{n+j-1}- {kn-1}\\choose{n+j} shows that j/n {kn}\\choose{n+j} is always an integer. Here we give a combinatorial interpretation of this integer in terms of lattice paths, using a uniformly distributed statistic. In particular, the case j=1,k=2 gives yet another manifestation of the Catalan numbers.", "revisions": [ { "version": "v1", "updated": "2006-04-21T19:14:39.000Z" } ], "analyses": { "subjects": [ "05A15" ], "keywords": [ "combinatorial interpretation", "catalan numbers", "identity j/n", "lattice paths" ], "note": { "typesetting": "LaTeX", "pages": 7, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2006math......4471C" } } }