{ "id": "math/0604299", "version": "v1", "published": "2006-04-12T21:08:44.000Z", "updated": "2006-04-12T21:08:44.000Z", "title": "A note on subgaussian estimates for linear functionals on convex bodies", "authors": [ "Apostolos Giannopoulos", "Alain Pajor", "Grigoris Paouris" ], "comment": "10 pages", "categories": [ "math.FA", "math.MG" ], "abstract": "We give an alternative proof of a recent result of Klartag on the existence of almost subgaussian linear functionals on convex bodies. If $K$ is a convex body in ${\\mathbb R}^n$ with volume one and center of mass at the origin, there exists $x\\neq 0$ such that $$|\\{y\\in K: |< y,x> |\\gr t\\|<\\cdot, x>\\|_1\\}|\\ls\\exp (-ct^2/\\log^2(t+1))$$ for all $t\\gr 1$, where $c>0$ is an absolute constant. The proof is based on the study of the $L_q$--centroid bodies of $K$. Analogous results hold true for general log-concave measures.", "revisions": [ { "version": "v1", "updated": "2006-04-12T21:08:44.000Z" } ], "analyses": { "subjects": [ "46B07", "52A20" ], "keywords": [ "convex body", "subgaussian estimates", "analogous results hold true", "subgaussian linear functionals", "general log-concave measures" ], "note": { "typesetting": "TeX", "pages": 10, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2006math......4299G" } } }