{ "id": "math/0604286", "version": "v1", "published": "2006-04-12T16:07:01.000Z", "updated": "2006-04-12T16:07:01.000Z", "title": "Existence and continuation of periodic solutions of Newtonian systems", "authors": [ "J. Fura", "A. Ratajczak", "S. Rybicki" ], "comment": "31 pages", "journal": "Journal of Differential Equations 218(1) (2005), 216-252", "categories": [ "math.CA" ], "abstract": "In this article we study the existence and the continuation of periodic solutions of autonomous Newtonian systems. To prove the results we apply the infinite-dimensional version of the degree for SO(2)-equivariant gradient operators. Using the results due to Rabier we show that the Leray-Schauder degree is not applicable in the proofs of our theorems, because it vanishes.", "revisions": [ { "version": "v1", "updated": "2006-04-12T16:07:01.000Z" } ], "analyses": { "subjects": [ "34C25", "47H11" ], "keywords": [ "periodic solutions", "continuation", "leray-schauder degree", "infinite-dimensional version", "gradient operators" ], "tags": [ "journal article" ], "note": { "typesetting": "TeX", "pages": 31, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2006math......4286F" } } }