{ "id": "math/0604191", "version": "v1", "published": "2006-04-08T21:25:24.000Z", "updated": "2006-04-08T21:25:24.000Z", "title": "A connection between decomposability of ultrafilters and possible cofinalities", "authors": [ "Paolo Lipparini" ], "comment": "8 pages", "categories": [ "math.LO" ], "abstract": "We introduce the decomposability spectrum $K_D=\\{\\lambda \\geq \\omega| D \\text{is} \\lambda\\text{-decomposable}\\}$ of an ultrafilter $D$, and show that Shelah's $\\pcf$ theory influences the possible values $K_D$ can take. For example, we show that if $\\aaa$ is a set of regular cardinals, $\\mu \\in \\pcfa$, the ultrafilter $D$ is $|\\aaa |^+$-complete and $K_D \\subseteq \\aaa$, then $\\mu \\in K_D$. As a consequence, we show that if $ \\lambda $ is singular and for some $ \\lambda' < \\lambda $ $K_D$ contains all regular cardinals in $ [\\lambda', \\lambda)$ then: (a) if $\\cf \\lambda = \\omega $ then either $ \\lambda \\in K_D$, or $ \\lambda ^+ \\in K_D$; and (b) if $D$ is $(\\cf \\lambda)^+$-complete then $ \\lambda ^+ \\in K_D$, and $\\pp (\\lambda)= \\lambda ^+$.", "revisions": [ { "version": "v1", "updated": "2006-04-08T21:25:24.000Z" } ], "analyses": { "subjects": [ "03E04" ], "keywords": [ "ultrafilter", "connection", "cofinalities", "regular cardinals" ], "note": { "typesetting": "TeX", "pages": 8, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2006math......4191L" } } }