{ "id": "math/0604055", "version": "v1", "published": "2006-04-04T02:24:13.000Z", "updated": "2006-04-04T02:24:13.000Z", "title": "Density of sets of natural numbers and the Levy group", "authors": [ "Melvyn B. Nathanson", "Rohit Parikh" ], "comment": "6 pages", "categories": [ "math.NT", "math.CO" ], "abstract": "Let $\\N$ denote the set of positive integers. The asymptotic density of the set $A \\subseteq \\N$ is $d(A) = \\lim_{n\\to\\infty} |A\\cap [1,n]|/n$, if this limit exists. Let $ \\mathcal{AD}$ denote the set of all sets of positive integers that have asymptotic density, and let $S_{\\N}$ denote the set of all permutations of the positive integers \\N. The group $\\mathcal{L}^{\\sharp}$ consists of all permutations $f \\in S_{\\N}$ such that $A \\in \\mathcal{AD}$ if and only if $f(A) \\in \\mathcal{AD}$, and the group $\\mathcal{L}^{\\ast}$ consists of all permutations $f \\in \\mathcal{L}^{\\sharp}$ such that $d(f(A)) = d(A)$ for all $A \\in \\mathcal{AD}$. Let $f:\\N \\to \\N $ be a one-to-one function such that $d(f(\\N))=1$ and, if $A \\in \\mathcal{AD}$, then $f(A) \\in \\mathcal{AD}$. It is proved that $f$ must also preserve density, that is, $d(f(A)) = d(A)$ for all $A \\in \\mathcal{AD}$. Thus, the groups $\\mathcal{L}^{\\sharp}$ and $\\mathcal{L}^{\\ast}$ coincide.", "revisions": [ { "version": "v1", "updated": "2006-04-04T02:24:13.000Z" } ], "analyses": { "subjects": [ "11B05", "11B13", "11B75" ], "keywords": [ "natural numbers", "levy group", "positive integers", "asymptotic density", "permutations" ], "note": { "typesetting": "TeX", "pages": 6, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2006math......4055N" } } }