{ "id": "math/0603655", "version": "v1", "published": "2006-03-28T14:53:16.000Z", "updated": "2006-03-28T14:53:16.000Z", "title": "Brunn-Minkowski Inequalities for Contingency Tables and Integer Flows", "authors": [ "Alexander Barvinok" ], "comment": "16 pages", "categories": [ "math.CO", "math.MG" ], "abstract": "Given a non-negative mxn matrix W=(w_ij) and positive integer vectors R=(r_1, >..., r_m) and C=(c_1, ..., c_n), we consider the total weight T(R, C; W) of mxn non-negative integer matrices (contingency tables) D with the row sums r_i, the column sums c_j, and the weight of D=(d_ij) equal to product of w_ij^d_ij. In particular, if W is a 0-1 matrix, T(R, C; W) is the number of integer feasible flows in a bipartite network. We prove a version of the Brunn-Minkowski inequality relating the numbers T(R, C; W) and T(R_k, C_k; W), where (R, C) is a convex combination of (R_k, C_k) for k=1, ..., p.", "revisions": [ { "version": "v1", "updated": "2006-03-28T14:53:16.000Z" } ], "analyses": { "subjects": [ "05A16", "52B12", "52B20", "52A41" ], "keywords": [ "contingency tables", "brunn-minkowski inequality", "integer flows", "mxn non-negative integer matrices", "positive integer vectors" ], "note": { "typesetting": "TeX", "pages": 16, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2006math......3655B" } } }