{ "id": "math/0603627", "version": "v2", "published": "2006-03-27T16:46:03.000Z", "updated": "2007-07-24T14:14:34.000Z", "title": "Scattering length for stable processes", "authors": [ "B. Siudeja" ], "comment": "preprint", "categories": [ "math.PR" ], "abstract": "Let $\\alpha\\in(0,2)$ and $X_t$ be a symmetric $\\alpha$-stable process. We define the scattering length $\\Gamma(v)$ of the positive potential $v$ and prove several of its basic properties. We use the scattering length to findestimates for the first eigenvalue of the Schr\\\"odinger operator of the ``Neumann'' fractional Laplacian in a cube with potential $v$.", "revisions": [ { "version": "v2", "updated": "2007-07-24T14:14:34.000Z" } ], "analyses": { "subjects": [ "60G52", "31C15" ], "keywords": [ "scattering length", "stable processes", "basic properties", "first eigenvalue", "fractional laplacian" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2006math......3627S" } } }