{ "id": "math/0603538", "version": "v1", "published": "2006-03-22T16:33:54.000Z", "updated": "2006-03-22T16:33:54.000Z", "title": "Generically there is but one self homeomorphism of the Cantor set", "authors": [ "Ethan Akin", "Eli Glasner", "Benjamin Weiss" ], "categories": [ "math.DS", "math.GR" ], "abstract": "We describe a self-homeomorphism $R$ of the Cantor set $X$ and then show that its conjugacy class in the Polish group $H(X)$ of all homeomorphisms of $X$ forms a dense $G_\\delta$ subset of $H(X)$. We also provide an example of a locally compact, second countable topological group which has a dense conjugacy class.", "revisions": [ { "version": "v1", "updated": "2006-03-22T16:33:54.000Z" } ], "analyses": { "subjects": [ "22A05" ], "keywords": [ "cantor set", "self homeomorphism", "dense conjugacy class", "second countable topological group" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2006math......3538A" } } }