{ "id": "math/0603525", "version": "v2", "published": "2006-03-22T00:35:47.000Z", "updated": "2006-03-23T16:00:00.000Z", "title": "Eternal Solutions to the Ricci Flow on $\\R^2$", "authors": [ "Panagiota Daskalopoulos", "Natasa Sesum" ], "categories": [ "math.AP" ], "abstract": "We provide the classification of eternal (or ancient) solutions of the two-dimensional Ricci flow, which is equivalent to the fast diffusion equation $ \\frac{\\partial u}{\\partial t} = \\Delta \\log u $ on $ \\R^2 \\times \\R.$ We show that, under the necessary assumption that for every $t \\in \\R$, the solution $u(\\cdot, t)$ defines a complete metric of bounded curvature and bounded width, $u$ is a gradient soliton of the form $ U(x,t) = \\frac{2}{\\beta (|x-x_0|^2 + \\delta e^{2\\beta t})}$, for some $x_0 \\in \\R^2$ and some constants $\\beta >0$ and $\\delta >0$.", "revisions": [ { "version": "v2", "updated": "2006-03-23T16:00:00.000Z" } ], "analyses": { "subjects": [ "35J60" ], "keywords": [ "eternal solutions", "fast diffusion equation", "two-dimensional ricci flow", "necessary assumption", "complete metric" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2006math......3525D" } } }