{ "id": "math/0603513", "version": "v1", "published": "2006-03-21T16:19:45.000Z", "updated": "2006-03-21T16:19:45.000Z", "title": "Hereditarily non-topologizable groups", "authors": [ "Gábor Lukács" ], "comment": "v0.99, 4 pages", "journal": "Topology Proceedings 33 (2009), 269-275", "categories": [ "math.GR", "math.GN" ], "abstract": "A group G is non-topologizable if the only Hausdorff group topology that G admits is the discrete one. Is there an infinite group G such that H/N is non-topologizable for every subgroup H <= G and every normal subgroup N <| H? We show that a solution of this essentially group theoretic question provides a solution to the problem of c-compactness.", "revisions": [ { "version": "v1", "updated": "2006-03-21T16:19:45.000Z" } ], "analyses": { "subjects": [ "20F05", "22C05", "22A05", "54H11" ], "keywords": [ "hereditarily non-topologizable groups", "hausdorff group topology", "essentially group theoretic question", "infinite group", "normal subgroup" ], "tags": [ "journal article" ], "note": { "typesetting": "TeX", "pages": 4, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2006math......3513L" } } }