{ "id": "math/0603504", "version": "v1", "published": "2006-03-21T13:38:39.000Z", "updated": "2006-03-21T13:38:39.000Z", "title": "On the size of spheres of relations with a transitive group of automorphisms", "authors": [ "Yahya Ould Hamidoune" ], "categories": [ "math.CO" ], "abstract": "Let $\\Gamma =(V,E)$ be a point-transitive reflexive relation. Let $v\\in V$ and put $r=|\\Gamma (v)|.$ Also assume $\\Gamma ^j(v)\\cap \\Gamma ^{-}(v)=\\{v\\}$. Then $$ |\\Gamma ^{j} (v)\\setminus \\Gamma ^{j-1} (v)| \\ge r-1.$$ In particular we have $ |\\Gamma ^{j} (v)| \\ge 1+(r-1)j.$ The last result confirms a recent conjecture of Seymour in the case vertex-transitive graphs. Also it gives a short proof for the validity of the Caccetta-H\\\"aggkvist conjecture for vertex-transitive graphs and generalizes an additive result of Shepherdson.", "revisions": [ { "version": "v1", "updated": "2006-03-21T13:38:39.000Z" } ], "analyses": { "subjects": [ "20D60" ], "keywords": [ "transitive group", "automorphisms", "conjecture", "result confirms", "case vertex-transitive graphs" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2006math......3504O" } } }