{ "id": "math/0603476", "version": "v1", "published": "2006-03-20T09:24:06.000Z", "updated": "2006-03-20T09:24:06.000Z", "title": "On Abel maps of stable curves", "authors": [ "Lucia Caporaso", "Eduardo Esteves" ], "comment": "32 pages", "categories": [ "math.AG" ], "abstract": "We construct Abel maps for a stable curve $X$. Namely, for each one-parameter deformation of $X$ with regular total space, and every integer $d>0$, we construct by specialization a map $\\alpha^d_X$ from the smooth locus of $X^d$ to the moduli scheme of balanced line bundles on semistable curves over $X$. For $d=1$, we show that $\\alpha^1_X$ naturally extends over $X$, and does not depend on the choice of the deformation; we give a precise description of when it is injective.", "revisions": [ { "version": "v1", "updated": "2006-03-20T09:24:06.000Z" } ], "analyses": { "subjects": [ "14H10" ], "keywords": [ "stable curve", "construct abel maps", "regular total space", "precise description", "one-parameter deformation" ], "note": { "typesetting": "TeX", "pages": 32, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2006math......3476C" } } }