{ "id": "math/0603395", "version": "v1", "published": "2006-03-16T11:00:07.000Z", "updated": "2006-03-16T11:00:07.000Z", "title": "Standard Module Conjecture", "authors": [ "V. Heiermann", "G. Muic" ], "comment": "8 pages", "categories": [ "math.RT", "math.NT" ], "abstract": "Let G be a quasi-split p-adic group. Under the assumption that the local coefficients $C_{\\psi}$ defined with respect to $\\psi $-generic tempered representations of standard Levi subgroups of G are regular in the negative Weyl chamber, we show that the standard module conjecture is true, which means that the Langlands quotient of a standard module is generic if and only if the standard module is irreducible.", "revisions": [ { "version": "v1", "updated": "2006-03-16T11:00:07.000Z" } ], "analyses": { "subjects": [ "22E50", "11F70" ], "keywords": [ "standard module conjecture", "quasi-split p-adic group", "standard levi subgroups", "generic tempered representations", "negative weyl chamber" ], "note": { "typesetting": "TeX", "pages": 8, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2006math......3395H" } } }