{ "id": "math/0603346", "version": "v1", "published": "2006-03-14T20:03:23.000Z", "updated": "2006-03-14T20:03:23.000Z", "title": "Oscillation of Fourier transform and Markov-Bernstein inequalities", "authors": [ "Szilard Gy. Revesz", "Noli N. Reyes", "Gino Angelo M. Velasco" ], "journal": "Journal of Approximation Theory 145 (2007), 100-110.", "doi": "10.1016/j.jat.2006.07.004", "categories": [ "math.CA" ], "abstract": "Under certain conditions on an integrable function f having a real-valued Fourier transform Tf=F, we obtain a certain estimate for the oscillation of F in the interval [-C||f'||/||f||,C||f'||/||f||] with C>0 an absolute constant. Given q>0 and an integrable positive definite function f, satisfying some natural conditions, the above estimate allows us to construct a finite linear combination P of translates f(x+kq)(with k running the integers) such that ||P'||>c||P||/q, where c>0 is another absolute constant. In particular, our construction proves sharpness of an inequality of H. N. Mhaskar for Gaussian networks.", "revisions": [ { "version": "v1", "updated": "2006-03-14T20:03:23.000Z" } ], "analyses": { "subjects": [ "42A38", "41A17" ], "keywords": [ "inequality", "markov-bernstein inequalities", "oscillation", "absolute constant", "finite linear combination" ], "tags": [ "journal article" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2006math......3346R" } } }