{ "id": "math/0603240", "version": "v2", "published": "2006-03-10T03:29:49.000Z", "updated": "2007-01-04T11:35:53.000Z", "title": "Algebraic invariants for Bestvina-Brady groups", "authors": [ "Stefan Papadima", "Alexander I. Suciu" ], "comment": "22 pages, accepted for publication in the Journal of the London Mathematical Society", "journal": "Journal of the London Mathematical Society 76 (2007), no. 2, 273-292", "doi": "10.1112/jlms/jdm045", "categories": [ "math.GR", "math.GT" ], "abstract": "Bestvina-Brady groups arise as kernels of length homomorphisms from right-angled Artin groups G_\\G to the integers. Under some connectivity assumptions on the flag complex \\Delta_\\G, we compute several algebraic invariants of such a group N_\\G, directly from the underlying graph \\G. As an application, we give examples of Bestvina-Brady groups which are not isomorphic to any Artin group or arrangement group.", "revisions": [ { "version": "v2", "updated": "2007-01-04T11:35:53.000Z" } ], "analyses": { "subjects": [ "20F36", "20F14", "57M07" ], "keywords": [ "algebraic invariants", "bestvina-brady groups arise", "flag complex", "length homomorphisms", "connectivity assumptions" ], "tags": [ "journal article" ], "note": { "typesetting": "TeX", "pages": 22, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2006math......3240P" } } }