{ "id": "math/0603217", "version": "v3", "published": "2006-03-09T12:13:25.000Z", "updated": "2006-04-15T11:16:13.000Z", "title": "A version of the volume conjecture", "authors": [ "Hitoshi Murakami" ], "comment": "5 pages, added more comments", "journal": "Advances in Mathematics, Volume 211, Issue 2, 1 June 2007, Pages 678-683", "doi": "10.1016/j.aim.2006.09.005", "categories": [ "math.GT" ], "abstract": "We propose a version of the volume conjecture that would relate a certain limit of the colored Jones polynomials of a knot to the volume function defined by a representation of the fundamental group of the knot complement to the special linear group of degree two over complex numbers. We also confirm the conjecture for the figure-eight knot and torus knots. This version is different from S. Gukov's because of a choice of polarization.", "revisions": [ { "version": "v3", "updated": "2006-04-15T11:16:13.000Z" } ], "analyses": { "subjects": [ "57M27", "57M25", "57M50" ], "keywords": [ "volume conjecture", "special linear group", "complex numbers", "colored jones polynomials", "knot complement" ], "tags": [ "journal article" ], "publication": { "publisher": "Elsevier", "journal": "Adv. Math." }, "note": { "typesetting": "TeX", "pages": 5, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2006math......3217M" } } }