{ "id": "math/0603186", "version": "v1", "published": "2006-03-08T13:53:14.000Z", "updated": "2006-03-08T13:53:14.000Z", "title": "Extension of Bernstein Polynomials to Infinite Dimensional Case", "authors": [ "Lorenzo D'Ambrosio" ], "comment": "14 pages. to appear on Journal of Approximation Theory", "journal": "Journal of Approximation Theory 140 (2006) 191 - 202", "doi": "10.1016/j.jat.2005.12.006", "categories": [ "math.FA", "math.CA" ], "abstract": "The purpose of this paper is to study some new concrete approximation processes for continuous vector-valued mappings defined on the infinite dimensional cube or on a subset of a real Hilbert space. In both cases these operators are modelled on classical Bernstein polynomials and represent a possible extension to an infinite dimensional setting. The same idea is generalized to obtain from a given approximation process for function defined on a real interval a new approximation process for vector-valued mappings defined on subsets of a real Hilbert space.", "revisions": [ { "version": "v1", "updated": "2006-03-08T13:53:14.000Z" } ], "analyses": { "subjects": [ "41A10", "41A36", "25E15" ], "keywords": [ "infinite dimensional case", "real hilbert space", "vector-valued mappings", "infinite dimensional cube", "concrete approximation processes" ], "tags": [ "journal article" ], "note": { "typesetting": "TeX", "pages": 14, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2006math......3186D" } } }