{ "id": "math/0603009", "version": "v1", "published": "2006-03-01T04:17:33.000Z", "updated": "2006-03-01T04:17:33.000Z", "title": "A Kirchoff-Sobolev parametrix for the wave equation and applications", "authors": [ "S. Klainerman", "I. Rodnianski" ], "categories": [ "math.AP", "math-ph", "math.MP" ], "abstract": "We propose a geometric construction of a first order physical space parametrix for solutions to covariant, tensorial wave equations on a curved background. We describe its applications to a large data breakdown criterion in General Relativity and also give a new gauge independent proof of the Eardley-Moncrief result on large data global existence result for the 3+1-dimensional Yang-MIlls equations.", "revisions": [ { "version": "v1", "updated": "2006-03-01T04:17:33.000Z" } ], "analyses": { "keywords": [ "wave equation", "kirchoff-sobolev parametrix", "large data global existence result", "applications", "first order physical space parametrix" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2006math......3009K" } } }