{ "id": "math/0602567", "version": "v1", "published": "2006-02-25T02:40:19.000Z", "updated": "2006-02-25T02:40:19.000Z", "title": "On the geography of Gorenstein minimal 3-folds of general type", "authors": [ "Meng Chen", "Christopher D. Hacon" ], "comment": "To appear in Asian J. Math", "categories": [ "math.AG" ], "abstract": "Let $X$ be a minimal projective Gorenstein 3-fold of general type. We give two applications of an inequality between $\\chi (\\omega_X)$ and $p_g(X)$: 1) Assume that the canonical map $\\Phi_{|K_X|}$ is of fiber type. Let $F$ be a smooth model of a generic irreducible component in the general fiber of $\\Phi_{|K_X|}$. Then the birational invariants of $F$ are bounded from above. 2) If $X$ is nonsingular, then $c_1^3\\leq {1/27} c_1c_2+{10/3}$ where $c_1$, $c_2$ are Chern invariants of $X$.", "revisions": [ { "version": "v1", "updated": "2006-02-25T02:40:19.000Z" } ], "analyses": { "subjects": [ "14C20", "14E35" ], "keywords": [ "general type", "gorenstein minimal", "minimal projective gorenstein", "birational invariants", "general fiber" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2006math......2567C" } } }