{ "id": "math/0602560", "version": "v1", "published": "2006-02-24T20:49:32.000Z", "updated": "2006-02-24T20:49:32.000Z", "title": "Global Well-Posedness for a periodic nonlinear Schrödinger equation in 1D and 2D", "authors": [ "Daniela De Silva", "Nataša Pavlović", "Gigliola Staffilani", "Nikolaos Tzirakis" ], "comment": "28 pages, 3 figures", "categories": [ "math.AP" ], "abstract": "The initial value problem for the $L^{2}$ critical semilinear Schr\\\"odinger equation with periodic boundary data is considered. We show that the problem is globally well posed in $H^{s}({\\Bbb T^{d}})$, for $s>4/9$ and $s>2/3$ in 1D and 2D respectively, confirming in 2D a statement of Bourgain in \\cite{bo2}. We use the ``$I$-method''. This method allows one to introduce a modification of the energy functional that is well defined for initial data below the $H^{1}({\\Bbb T^{d}})$ threshold. The main ingredient in the proof is a \"refinement\" of the Strichartz's estimates that hold true for solutions defined on the rescaled space, $\\Bbb T^{d}_{\\lambda} = \\Bbb R^{d}/{\\lambda \\Bbb Z^{d}}$, $d=1,2$.", "revisions": [ { "version": "v1", "updated": "2006-02-24T20:49:32.000Z" } ], "analyses": { "subjects": [ "35Q55", "35A05" ], "keywords": [ "periodic nonlinear schrödinger equation", "global well-posedness", "initial value problem", "periodic boundary data", "hold true" ], "note": { "typesetting": "TeX", "pages": 28, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2006math......2560D" } } }