{ "id": "math/0602478", "version": "v2", "published": "2006-02-21T21:46:47.000Z", "updated": "2006-10-06T22:17:15.000Z", "title": "The expected number of zeros of a random system of $p$-adic polynomials", "authors": [ "Steven N. Evans" ], "comment": "13 pages, no figures, revised to incorporate referees' comments", "categories": [ "math.PR", "math.AC" ], "abstract": "We study the simultaneous zeros of a random family of $d$ polynomials in $d$ variables over the $p$-adic numbers. For a family of natural models, we obtain an explicit constant for the expected number of zeros that lie in the $d$-fold Cartesian product of the $p$-adic integers. Considering models in which the maximum degree that each variable appears is $N$, this expected value is \\[ p^{d \\lfloor \\log_p N \\rfloor} (1 + p^{-1} + p^{-2} + ... + p^{-d})^{-1} \\] for the simplest such model.", "revisions": [ { "version": "v2", "updated": "2006-10-06T22:17:15.000Z" } ], "analyses": { "subjects": [ "60B99", "30G15", "11S80", "30G06" ], "keywords": [ "expected number", "random system", "adic polynomials", "fold cartesian product", "adic numbers" ], "note": { "typesetting": "TeX", "pages": 13, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2006math......2478E" } } }