{ "id": "math/0602434", "version": "v1", "published": "2006-02-20T17:10:05.000Z", "updated": "2006-02-20T17:10:05.000Z", "title": "On defensive alliances and line graphs", "authors": [ "J. M. Sigarreta", "J. A. Rodriguez" ], "journal": "Applied Mathematics Letters 19 (12) (2006) 1345-1350", "categories": [ "math.CO" ], "abstract": "Let $\\Gamma$ be a simple graph of size $m$ and degree sequence $\\delta_1\\ge \\delta_2\\ge ... \\ge \\delta_n$. Let ${\\cal L}(\\Gamma)$ denotes the line graph of $\\Gamma$. The aim of this paper is to study mathematical properties of the alliance number, ${a}({\\cal L}(\\Gamma)$, and the global alliance number, $\\gamma_{a}({\\cal L}(\\Gamma))$, of the line graph of a simple graph. We show that $\\lceil\\frac{\\delta_{n}+\\delta_{n-1}-1}{2}\\rceil \\le {a}({\\cal L}(\\Gamma))\\le \\delta_1.$ In particular, if $\\Gamma$ is a $\\delta$-regular graph ($\\delta>0$), then $a({\\cal L}(\\Gamma))=\\delta$, and if $\\Gamma$ is a $(\\delta_1,\\delta_2)$-semiregular bipartite graph, then $a({\\cal L}(\\Gamma))=\\lceil \\frac{\\delta_1+\\delta_2-1}{2} \\rceil$. As a consequence of the study we compare $a({\\cal L}(\\Gamma))$ and ${a}(\\Gamma)$, and we characterize the graphs having $a({\\cal L}(\\Gamma))<4$. Moreover, we show that the global-connected alliance number of ${\\cal L}(\\Gamma)$ is bounded by $\\gamma_{ca}({\\cal L}(\\Gamma)) \\ge \\lceil\\sqrt{D(\\Gamma)+m-1}-1\\rceil,$ where $D(\\Gamma)$ denotes the diameter of $\\Gamma$, and we show that the global alliance number of ${\\cal L}(\\Gamma)$ is bounded by $\\gamma_{a}({\\cal L}(\\Gamma))\\geq \\lceil\\frac{2m}{\\delta_{1}+\\delta_{2}+1}\\rceil$. The case of strong alliances is studied by analogy.", "revisions": [ { "version": "v1", "updated": "2006-02-20T17:10:05.000Z" } ], "analyses": { "subjects": [ "05C69", "15C05" ], "keywords": [ "line graph", "defensive alliances", "global alliance number", "simple graph", "semiregular bipartite graph" ], "tags": [ "journal article" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2006math......2434S" } } }