{ "id": "math/0602415", "version": "v1", "published": "2006-02-20T20:21:06.000Z", "updated": "2006-02-20T20:21:06.000Z", "title": "Decidability of the Natural Numbers with the Almost-All Quantifier", "authors": [ "David Marker", "Theodore A. Slaman" ], "categories": [ "math.LO", "math-ph", "math.MP" ], "abstract": "We consider the fragment F of first order arithmetic in which quantification is restricted to ''for all but finitely many.'' We show that the integers form an F-elementary substructure of the real numbers. Consequently, the F-theory of arithmetic is decidable.", "revisions": [ { "version": "v1", "updated": "2006-02-20T20:21:06.000Z" } ], "analyses": { "subjects": [ "03F30" ], "keywords": [ "natural numbers", "almost-all quantifier", "decidability", "first order arithmetic", "f-elementary substructure" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2006math......2415M" } } }