{ "id": "math/0602352", "version": "v1", "published": "2006-02-16T11:13:20.000Z", "updated": "2006-02-16T11:13:20.000Z", "title": "A recursive method for computing zeta functions of varieties", "authors": [ "Alan G. B. Lauder" ], "comment": "48 Pages", "journal": "LMS J. Comp. Math. Vol.9, 2006, 222-269. www.lms.ac.uk/jcm/9/", "categories": [ "math.NT", "math.AG" ], "abstract": "We present a method for computing the zeta function of a smooth projective variety over a finite field which proceeds by induction on the dimension. We have implemented our approach for some surfaces using the Magma programming language, and present some explicit examples which we have computed.", "revisions": [ { "version": "v1", "updated": "2006-02-16T11:13:20.000Z" } ], "analyses": { "subjects": [ "11Y99", "11G25" ], "keywords": [ "computing zeta functions", "recursive method", "finite field", "smooth projective variety", "magma programming language" ], "tags": [ "journal article" ], "note": { "typesetting": "TeX", "pages": 48, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2006math......2352L" } } }