{ "id": "math/0602336", "version": "v3", "published": "2006-02-15T17:57:58.000Z", "updated": "2006-06-01T10:19:24.000Z", "title": "Multiples of lattice polytopes without interior lattice points", "authors": [ "Victor Batyrev", "Benjamin Nill" ], "comment": "AMS-LaTeX, 13 pages; typos corrected, reference added", "journal": "Moscow Math. J. 7 (2007), 195-207", "categories": [ "math.CO", "math.AG" ], "abstract": "Let $\\Delta$ be an $n$-dimensional lattice polytope. The smallest non-negative integer $i$ such that $k \\Delta$ contains no interior lattice points for $1 \\leq k \\leq n - i$ we call the degree of $\\Delta$. We consider lattice polytopes of fixed degree $d$ and arbitrary dimension $n$. Our main result is a complete classification of $n$-dimensional lattice polytopes of degree $d=1$. This is a generalization of the classification of lattice polygons $(n=2)$ without interior lattice points due to Arkinstall, Khovanskii, Koelman and Schicho. Our classification shows that the secondary polytope of a lattice polytope of degree 1 is always a simple polytope.", "revisions": [ { "version": "v3", "updated": "2006-06-01T10:19:24.000Z" } ], "analyses": { "subjects": [ "52B20", "14M25" ], "keywords": [ "interior lattice points", "dimensional lattice polytope", "smallest non-negative integer", "lattice polygons", "simple polytope" ], "tags": [ "journal article" ], "note": { "typesetting": "LaTeX", "pages": 13, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2006math......2336B" } } }