{ "id": "math/0602327", "version": "v1", "published": "2006-02-15T11:31:18.000Z", "updated": "2006-02-15T11:31:18.000Z", "title": "The automorphism group of a free-by-cyclic groups in rank 2", "authors": [ "O. Bogopolski", "A. Martino", "E. Ventura" ], "comment": "14 pages", "categories": [ "math.GR" ], "abstract": "Let $\\phi$ be an automorphism of a free group $F_n$ of rank $n$, and let $M_{\\phi}=F_n \\rtimes_{\\phi} \\mathbb{Z}$ be the corresponding mapping torus of $\\phi$. We study the group $Out(M_{\\phi})$ under certain technical conditions on $\\phi$. Moreover, in the case of rank 2, we classify the cases when this group is finite or virtually cyclic, depending on the conjugacy class of the image of $\\phi$ in $GL_2(\\mathbb{Z})$.", "revisions": [ { "version": "v1", "updated": "2006-02-15T11:31:18.000Z" } ], "analyses": { "subjects": [ "20E06", "20E36" ], "keywords": [ "free-by-cyclic groups", "automorphism group", "free group", "conjugacy class", "technical conditions" ], "note": { "typesetting": "TeX", "pages": 14, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2006math......2327B" } } }