{ "id": "math/0602317", "version": "v2", "published": "2006-02-14T22:35:20.000Z", "updated": "2006-02-23T21:19:26.000Z", "title": "Variations on the Tait-Kneser theorem", "authors": [ "Serge Tabachnikov", "Vladlen Timorin" ], "comment": "14 pages, 6 figures, v2: references added", "categories": [ "math.DG", "math.AG" ], "abstract": "The classical Tait-Kneser theorem states that the osculating circles of a smooth plane curve, free from curvature extrema, are pairwise disjoint. We prove a number of analogs of this theorem, e.g., for ovals of osculating cubics, osculating polynomials and trigonometric polynomials; in each case, we will obtain a non-differentiable foliation with smooth leaves.", "revisions": [ { "version": "v2", "updated": "2006-02-23T21:19:26.000Z" } ], "analyses": { "subjects": [ "53A20", "51N15" ], "keywords": [ "variations", "classical tait-kneser theorem states", "smooth plane curve", "smooth leaves", "curvature extrema" ], "note": { "typesetting": "TeX", "pages": 14, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2006math......2317T" } } }