{ "id": "math/0602258", "version": "v2", "published": "2006-02-13T19:45:21.000Z", "updated": "2006-02-16T18:12:45.000Z", "title": "A Counterexample to King's Conjecture", "authors": [ "Lutz Hille", "Markus Perling" ], "comment": "15 pages, 4 figures, requires packages ams*, enumerate, graphicx, citation corrected", "journal": "Compos. Math. 142, No. 6, 1507-1521 (2006)", "categories": [ "math.AG", "hep-th" ], "abstract": "King's conjecture states that on every smooth complete toric variety $X$ there exists a strongly exceptional collection which generates the bounded derived category of $X$ and which consists of line bundles. We give a counterexample to this conjecture. This example is just the Hirzebruch surface $\\mathbb{F}_2$ iteratively blown up three times, and we show by explicit computation of cohomology vanishing that there exist no strongly exceptional sequences of length 7.", "revisions": [ { "version": "v2", "updated": "2006-02-16T18:12:45.000Z" } ], "analyses": { "subjects": [ "14M25", "18E30", "14J81" ], "keywords": [ "counterexample", "smooth complete toric variety", "kings conjecture states", "strongly exceptional collection", "line bundles" ], "tags": [ "journal article" ], "note": { "typesetting": "TeX", "pages": 15, "language": "en", "license": "arXiv", "status": "editable", "inspire": 710546, "adsabs": "2006math......2258H" } } }