{ "id": "math/0602176", "version": "v1", "published": "2006-02-08T22:12:26.000Z", "updated": "2006-02-08T22:12:26.000Z", "title": "Measure rigidity beyond uniform hyperbolicity: Invariant Measures for Cartan actions on Tori", "authors": [ "Boris Kalinin", "Anatole Katok" ], "comment": "28 pages", "categories": [ "math.DS" ], "abstract": "We prove that every smooth action of Z^k, k>1, on the (k+1)-dimensional torus homotopic to an action by hyperbolic linear maps preserves an absolutely continuous measure. This is a first known result concerning abelian groups of diffeomorphisms where existence of an invariant geometric structure is obtained from homotopy data.", "revisions": [ { "version": "v1", "updated": "2006-02-08T22:12:26.000Z" } ], "analyses": { "subjects": [ "37C40", "37D25", "37C85" ], "keywords": [ "uniform hyperbolicity", "invariant measures", "cartan actions", "measure rigidity", "hyperbolic linear maps preserves" ], "note": { "typesetting": "TeX", "pages": 28, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2006math......2176K" } } }