{ "id": "math/0601582", "version": "v1", "published": "2006-01-24T12:47:43.000Z", "updated": "2006-01-24T12:47:43.000Z", "title": "Complete subamanifolds of $\\mathbb{R}^{n}$ with finite topology", "authors": [ "G. Pacelli Bessa", "L. Jorge", "J. Fabio Montenegro" ], "comment": "8 pages", "journal": "Comm. Anal. Geom. vol. 15, n.4 (2007) 725-732", "categories": [ "math.DG" ], "abstract": "We show that a complete $m$-dimensional immersed submanifold $M$ of $\\mathbb{R}^{n}$ with $a(M)<1$ is properly immersed and have finite topology, where $a(M)\\in [0,\\infty]$ is an scaling invariant number that gives the rate that the norm of the second fundamental form decays to zero at infinity. The class of submanifolds $M$ with $a(M)<1$ contains all complete minimal surfaces in $\\mathbb{R}^{n}$ with finite total curvature, all $m$-dimensional minimal submanifolds $M $ of $ \\mathbb{R}^{n}$ with finite total scalar curvature $\\smallint_{M}| \\alpha |^{m} dV<\\infty $ and all complete 2-dimensional complete surfaces with $\\smallint_{M}| \\alpha |^{2} dV<\\infty $ and nonpositive curvature with respect to every normal direction, since $a(M)=0$ for them.", "revisions": [ { "version": "v1", "updated": "2006-01-24T12:47:43.000Z" } ], "analyses": { "subjects": [ "53C42" ], "keywords": [ "finite topology", "complete subamanifolds", "finite total scalar curvature", "second fundamental form decays", "dimensional minimal submanifolds" ], "tags": [ "journal article" ], "note": { "typesetting": "TeX", "pages": 8, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2006math......1582P" } } }