{ "id": "math/0601580", "version": "v3", "published": "2006-01-24T12:10:06.000Z", "updated": "2008-03-17T11:39:27.000Z", "title": "Selmer groups of abelian varieties in extensions of function fields", "authors": [ "Amilcar Pacheco" ], "comment": "final version, to appear in Mathematische Zeitschrift", "categories": [ "math.NT", "math.AG" ], "abstract": "Let $k$ be a field of characteristic $q$, $\\cac$ a smooth geometrically connected curve defined over $k$ with function field $K:=k(\\cac)$. Let $A/K$ be a non constant abelian variety defined over $K$ of dimension $d$. We assume that $q=0$ or $>2d+1$. Let $p\\ne q$ be a prime number and $\\cac'\\to\\cac$ a finite geometrically \\textsc{Galois} and \\'etale cover defined over $k$ with function field $K':=k(\\cac')$. Let $(\\tau',B')$ be the $K'/k$-trace of $A/K$. We give an upper bound for the $\\bbz_p$-corank of the \\textsc{Selmer} group $\\text{Sel}_p(A\\times_KK')$, defined in terms of the $p$-descent map. As a consequence, we get an upper bound for the $\\bbz$-rank of the \\textsc{Lang-N\\'eron} group $A(K')/\\tau'B'(k)$. In the case of a geometric tower of curves whose \\textsc{Galois} group is isomorphic to $\\bbz_p$, we give sufficient conditions for the \\textsc{Lang-N\\'eron} group of $A$ to be uniformly bounded along the tower.", "revisions": [ { "version": "v3", "updated": "2008-03-17T11:39:27.000Z" } ], "analyses": { "keywords": [ "function field", "selmer groups", "upper bound", "geometrically connected curve", "extensions" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2006math......1580P" } } }