{ "id": "math/0601549", "version": "v1", "published": "2006-01-23T12:42:36.000Z", "updated": "2006-01-23T12:42:36.000Z", "title": "A converse theorem for $Γ_0(13)$", "authors": [ "J. B. Conrey", "David W. Farmer", "B. E. Odgers", "N. C. Snaith" ], "comment": "10 pages, LaTeX", "categories": [ "math.NT" ], "abstract": "We prove that a Dirichlet series with a functional equation and Euler product of a particular form can only arise from a holomorphic cusp form on the Hecke congruence group $\\Gamma_0(13)$. The proof does not assume a functional equation for the twists of the Dirichlet series. The main new ingredient is a generalization of the familiar Weil's lemma that played a prominent role in previous converse theorems.", "revisions": [ { "version": "v1", "updated": "2006-01-23T12:42:36.000Z" } ], "analyses": { "subjects": [ "11F66" ], "keywords": [ "converse theorem", "dirichlet series", "functional equation", "familiar weils lemma", "holomorphic cusp form" ], "note": { "typesetting": "LaTeX", "pages": 10, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2006math......1549C" } } }