{ "id": "math/0601277", "version": "v1", "published": "2006-01-12T08:56:51.000Z", "updated": "2006-01-12T08:56:51.000Z", "title": "Pointwise convergence of the ergodic bilinear Hilbert transform", "authors": [ "Ciprian Demeter" ], "comment": "28 pages, no figures", "categories": [ "math.CA", "math.DS" ], "abstract": "Let ${\\bf X}=(X, \\Sigma, m, \\tau)$ be a dynamical system. We prove that the bilinear series $\\sideset{}{'}\\sum_{n=-N}^{N}\\frac{f(\\tau^nx)g(\\tau^{-n}x)}{n}$ converges almost everywhere for each $f,g\\in L^{\\infty}(X).$ We also give a proof along the same lines of Bourgain's analog result for averages.", "revisions": [ { "version": "v1", "updated": "2006-01-12T08:56:51.000Z" } ], "analyses": { "subjects": [ "42B20", "42B25", "37A05" ], "keywords": [ "ergodic bilinear hilbert transform", "pointwise convergence", "bourgains analog result", "bilinear series" ], "note": { "typesetting": "TeX", "pages": 28, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2006math......1277D" } } }