{ "id": "math/0601192", "version": "v1", "published": "2006-01-09T20:55:00.000Z", "updated": "2006-01-09T20:55:00.000Z", "title": "Wiener-Wintner for Hilbert Transform", "authors": [ "Michael Lacey", "Erin Terwilleger" ], "comment": "Submitted to Arkiv", "categories": [ "math.CA", "math.DS" ], "abstract": "We prove the following extension of the Wiener--Wintner Theorem in Ergodic Theor and the Carleson Theorem on pointwise convergence of Fourier series: For all measure preserving flows $ (X,\\mu , T_t)$ and $ f\\in L^p (X,\\mu)$, there is a set $X_f\\subset X $ of probability one, so that for all $x\\in X_f$ we have \\begin{equation*} \\lim _{s\\downarrow0} \\int _{s<\\abs t<1/s} \\operatorname e ^{i \\theta t} f(\\operatorname T_tx)\\; \\frac{dt}t \\qquad \\text{exists for all $\\theta$.} \\end{equation*} The proof is by way of establishing an appropriate oscillation inequality which is itself an extension of Carleson's theorem.", "revisions": [ { "version": "v1", "updated": "2006-01-09T20:55:00.000Z" } ], "analyses": { "keywords": [ "hilbert transform", "appropriate oscillation inequality", "carlesons theorem", "ergodic theor", "carleson theorem" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2006math......1192L" } } }