{ "id": "math/0601189", "version": "v1", "published": "2006-01-09T19:40:58.000Z", "updated": "2006-01-09T19:40:58.000Z", "title": "Projective Normality Of Algebraic Curves And Its Application To Surfaces", "authors": [ "Seonja Kim", "YoungRock Kim" ], "comment": "7 pages, 1figure", "categories": [ "math.AG" ], "abstract": "Let $L$ be a very ample line bundle on a smooth curve $C$ of genus $g$ with $\\frac{3g+3}{2}<\\deg L\\le 2g-5$. Then $L$ is normally generated if $\\deg L>\\max\\{2g+2-4h^1(C,L), 2g-\\frac{g-1}{6}-2h^1(C,L)\\}$. Let $C$ be a triple covering of genus $p$ curve $C'$ with $C\\stackrel{\\phi}\\to C'$ and $D$ a divisor on $C'$ with $4p<\\deg D< \\frac{g-1}{6}-2p$. Then $K_C(-\\phi^*D)$ becomes a very ample line bundle which is normally generated. As an application, we characterize some smooth projective surfaces.", "revisions": [ { "version": "v1", "updated": "2006-01-09T19:40:58.000Z" } ], "analyses": { "subjects": [ "14H45", "14H10", "14C20", "14J10", "14J27", "14J28" ], "keywords": [ "algebraic curves", "projective normality", "ample line bundle", "application", "smooth curve" ], "note": { "typesetting": "TeX", "pages": 7, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2006math......1189K" } } }