{ "id": "math/0601168", "version": "v1", "published": "2006-01-09T08:10:47.000Z", "updated": "2006-01-09T08:10:47.000Z", "title": "Universal Families on moduli spaces of principal bundles on curves", "authors": [ "V. Balaji", "I. Biswas", "D. S. Nagaraj", "P. E. Newstead" ], "categories": [ "math.AG" ], "abstract": "Let $H$ be a connected semisimple linear algebraic group defined over $\\mathbb C$ and $X$ a compact connected Riemann surface of genus at least three. Let ${\\mathcal M}'_X(H)$ be the moduli space parametrising all topologically trivial stable principal $H$-bundles over $X$ whose automorphism group coincides with the centre of $H$. It is a Zariski open dense subset of the moduli space of stable principal $H$-bundles. We prove that there is a universal principal $H$-bundle over $X\\times {\\mathcal M}'_X(H)$ if and only if $H$ is an adjoint group (that is, the centre of $H$ is trivial).", "revisions": [ { "version": "v1", "updated": "2006-01-09T08:10:47.000Z" } ], "analyses": { "keywords": [ "moduli space", "principal bundles", "universal families", "connected semisimple linear algebraic group", "zariski open dense subset" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2006math......1168B" } } }