{ "id": "math/0601164", "version": "v6", "published": "2006-01-09T05:28:30.000Z", "updated": "2008-06-20T21:08:35.000Z", "title": "Spacetime bounds for the energy-critical nonlinear wave equation in three spatial dimensions", "authors": [ "Terence Tao" ], "comment": "18 pages, no figures. Some corrections", "journal": "Dynamics of PDE 3 (2006), 93-110", "categories": [ "math.AP" ], "abstract": "Results of Struwe, Grillakis, Struwe-Shatah, Kapitanski, Bahouri-Shatah, Bahouri-G\\'erard and Nakanishi have established global wellposedness, regularity, and scattering in the energy class for the energy-critical nonlinear wave equation $\\Box u = u^5$ in $\\R^{1+3}$, together with a spacetime bound $$ \\| u \\|_{L^4_t L^{12}_x(\\R^{1+3})} \\leq M(E(u))$$ for some finite quantity M(E(u)) depending only on the energy E(u) of u. We reprove this result, and show that this quantity obeys a bound of at most exponential type in the energy, and specifically $M(E) \\leq C (1+E)^{C E^{105/2}}$ for some absolute constant C > 0. The argument combines the quantitative local potential energy decay estimates of these previous papers with arguments used by Bourgain and the author for the analogous nonlinear Schr\\\"odinger equation.", "revisions": [ { "version": "v6", "updated": "2008-06-20T21:08:35.000Z" } ], "analyses": { "subjects": [ "35L15" ], "keywords": [ "energy-critical nonlinear wave equation", "spacetime bound", "spatial dimensions", "local potential energy decay estimates" ], "tags": [ "journal article" ], "note": { "typesetting": "TeX", "pages": 18, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2006math......1164T" } } }