{ "id": "math/0601043", "version": "v1", "published": "2006-01-03T13:32:36.000Z", "updated": "2006-01-03T13:32:36.000Z", "title": "Variation of argument and Bernstein index for holomorphic functions on Riemann surfaces", "authors": [ "Yulij Ilyashenko" ], "comment": "11 pages", "categories": [ "math.DS" ], "abstract": "An upper bound of the variation of argument of a holomorphic function along a curve on a Riemann surface is given. This bound is expressed through the Bernstein index of the function multiplied by a geometric constant. The Bernstein index characterizes growth of the function from a smaller domain to a larger one. The geometric constant in the estimate is explicitly given. This result is applied in \\cite {GI} to the solution of the restricted version of the infinitesimal Hilbert 16th problem, namely, to upper estimates of the number of zeros of abelian integrals in complex domains.", "revisions": [ { "version": "v1", "updated": "2006-01-03T13:32:36.000Z" } ], "analyses": { "subjects": [ "58F21" ], "keywords": [ "holomorphic function", "riemann surface", "bernstein index characterizes growth", "geometric constant", "infinitesimal hilbert 16th problem" ], "note": { "typesetting": "TeX", "pages": 11, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2006math......1043I" } } }