{ "id": "math/0512640", "version": "v1", "published": "2005-12-29T17:44:11.000Z", "updated": "2005-12-29T17:44:11.000Z", "title": "On the Motive of the Stack of Bundles", "authors": [ "Kai Behrend", "Ajneet Dhillon" ], "categories": [ "math.AG" ], "abstract": "Let $G$ be a split connected semisimple group over a field. We give a conjectural formula for the motive of the stack of $G$-bundles over a curve $C$, in terms of special values of the motivic zeta function of $C$. The formula is true if $C=\\pp^1$ or $G=\\sln$. If $k=\\cc$, upon applying the Poincar\\'e or Serre characteristic, the formula reduces to results of Teleman and Atiyah-Bott on the gauge group. If $k=\\ffq$, upon applying the counting measure, it reduces to the fact that the Tamagawa number of $G$ over the function field of $C$ is $|\\pi_1(G)|$.", "revisions": [ { "version": "v1", "updated": "2005-12-29T17:44:11.000Z" } ], "analyses": { "keywords": [ "motivic zeta function", "split connected semisimple group", "function field", "tamagawa number", "gauge group" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2005math.....12640B" } } }