{ "id": "math/0512598", "version": "v3", "published": "2005-12-27T12:46:12.000Z", "updated": "2007-12-15T18:12:51.000Z", "title": "On partitions of the unit interval generated by Brocot sequences", "authors": [ "Anna Dushistova" ], "comment": "36 pages", "categories": [ "math.NT" ], "abstract": "Let $ p_{i, n}, i=1,..., N(n)=2^{n-1} $ be the lengths of intervals between the neighboring fractions of Brocot sequence $ F_n $. We obtain an asymptotic formula for $\\sigma_{\\beta}(F_n)=\\sum_{i=1}^{N(n)} p_{i, n}^{\\beta} $,which improves known estimates.", "revisions": [ { "version": "v3", "updated": "2007-12-15T18:12:51.000Z" } ], "analyses": { "subjects": [ "11B99" ], "keywords": [ "unit interval", "brocot sequence", "partitions", "asymptotic formula" ], "note": { "typesetting": "TeX", "pages": 36, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2005math.....12598D" } } }