{ "id": "math/0512538", "version": "v1", "published": "2005-12-23T06:47:12.000Z", "updated": "2005-12-23T06:47:12.000Z", "title": "On invariants of a set of elements of a semisimple Lie algebra", "authors": [ "Ivan V. Losev" ], "comment": "11 pages", "journal": "J. Lie Theory 20(2010), 17-30", "categories": [ "math.RT", "math.AG" ], "abstract": "Let $G$ be a complex reductive algebraic group, $g$ its Lie algebra and $h$ a reductive subalgebra of $g$, $n$ a positive integer. Consider the diagonal actions $G:g^n, N_G(h):h^n$. We study a relation between the algebra $C[h^n]^{N_G(h)}$ and its subalgebra consisting of restrictions to $h^n$ of elements of $C[g^n]^G$.", "revisions": [ { "version": "v1", "updated": "2005-12-23T06:47:12.000Z" } ], "analyses": { "subjects": [ "17B20", "14R20", "14L30" ], "keywords": [ "semisimple lie algebra", "invariants", "complex reductive algebraic group", "diagonal actions", "reductive subalgebra" ], "tags": [ "journal article" ], "note": { "typesetting": "TeX", "pages": 11, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2005math.....12538L" } } }