{ "id": "math/0512464", "version": "v1", "published": "2005-12-20T13:02:47.000Z", "updated": "2005-12-20T13:02:47.000Z", "title": "N/V-limit for Stochastic Dynamics in Continuous Particle Systems", "authors": [ "Martin Grothaus", "Yuri G. Kondratiev", "Michael Röckner" ], "comment": "35 pages; BiBoS-Preprint No. 04-12-172; publication in preparation", "categories": [ "math.PR", "math-ph", "math.MP" ], "abstract": "We provide an $N/V$-limit for the infinite particle, infinite volume stochastic dynamics associated with Gibbs states in continuous particle systems on $\\mathbb R^d$, $d \\ge 1$. Starting point is an $N$-particle stochastic dynamic with singular interaction and reflecting boundary condition in a subset $\\Lambda \\subset {\\mathbb R}^d$ with finite volume (Lebesgue measure) $V = |\\Lambda| < \\infty$. The aim is to approximate the infinite particle, infinite volume stochastic dynamic by the above $N$-particle dynamic in $\\Lambda$ as $N \\to \\infty$ and $V \\to \\infty$ such that $N/V \\to \\rho$, where $\\rho$ is the particle density.", "revisions": [ { "version": "v1", "updated": "2005-12-20T13:02:47.000Z" } ], "analyses": { "subjects": [ "60B12", "82C22", "60K35", "60J60", "60H10" ], "keywords": [ "continuous particle systems", "infinite particle", "particle stochastic dynamic", "infinite volume stochastic dynamics", "lebesgue measure" ], "note": { "typesetting": "TeX", "pages": 35, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2005math.....12464G" } } }