{ "id": "math/0512433", "version": "v2", "published": "2005-12-19T02:43:09.000Z", "updated": "2006-01-26T02:00:48.000Z", "title": "Strong Integrality of Quantum Invariants of 3-manifolds", "authors": [ "Thang T. Q. Le" ], "comment": "19 pages. Minor typos corrected", "categories": [ "math.GT", "math.QA" ], "abstract": "We prove that the quantum SO(3)-invariant of an arbitrary 3-manifold $M$ is always an algebraic integer, if the order of the quantum parameter is co-prime with the order of the torsion part of $H_1(M,\\BZ)$. An even stronger integrality, known as cyclotomic integrality, was established by Habiro for integral homology 3-spheres. Here we generalize Habiro's result to all rational homology 3-spheres.", "revisions": [ { "version": "v2", "updated": "2006-01-26T02:00:48.000Z" } ], "analyses": { "subjects": [ "57M25" ], "keywords": [ "quantum invariants", "strong integrality", "generalize habiros result", "algebraic integer", "quantum parameter" ], "note": { "typesetting": "TeX", "pages": 19, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2005math.....12433L" } } }