{ "id": "math/0512399", "version": "v2", "published": "2005-12-16T16:22:51.000Z", "updated": "2006-06-02T20:50:13.000Z", "title": "Summation of Series Defined by Counting Blocks of Digits", "authors": [ "Jean-Paul Allouche", "Jeffrey Shallit", "Jonathan Sondow" ], "comment": "12 pages, Introduction expanded, references added, accepted by J. Number Theory", "journal": "Journal of Number Theory 123 (2007) 133-143", "doi": "10.1016/j.jnt.2006.06.001", "categories": [ "math.NT" ], "abstract": "We discuss the summation of certain series defined by counting blocks of digits in the $B$-ary expansion of an integer. For example, if $s_2(n)$ denotes the sum of the base-2 digits of $n$, we show that $\\sum_{n \\geq 1} s_2(n)/(2n(2n+1)) = (\\gamma + \\log \\frac{4}{\\pi})/2$. We recover this previous result of Sondow in math.NT/0508042 and provide several generalizations.", "revisions": [ { "version": "v2", "updated": "2006-06-02T20:50:13.000Z" } ], "analyses": { "subjects": [ "11A63", "11Y60" ], "keywords": [ "counting blocks", "ary expansion", "generalizations" ], "tags": [ "journal article" ], "note": { "typesetting": "TeX", "pages": 12, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2005math.....12399A" } } }