{ "id": "math/0512370", "version": "v1", "published": "2005-12-15T16:08:51.000Z", "updated": "2005-12-15T16:08:51.000Z", "title": "Elementary proof of the B. and M. Shapiro conjecture for rational functions", "authors": [ "Alexandre Eremenko", "Andrei Gabrielov" ], "comment": "21 pages", "journal": "Notions of positivity and the geometry of polynomials, trends in mathematics, Springer, Basel, 2011, p. 167-178", "categories": [ "math.AG", "math.CV" ], "abstract": "We give a new elementary proof of the following theorem: if all critical points of a rational function g belong to the real line then there exists a fractional linear transformation L such that L(g) is a real rational function. Then we interpret the result in terms of Fuchsian differential equations whose general solution is a polynomial and in terms of electrostatics.", "revisions": [ { "version": "v1", "updated": "2005-12-15T16:08:51.000Z" } ], "analyses": { "subjects": [ "14M15", "14N10", "14P99", "26C15" ], "keywords": [ "elementary proof", "shapiro conjecture", "fractional linear transformation", "real rational function", "fuchsian differential equations" ], "tags": [ "journal article" ], "note": { "typesetting": "TeX", "pages": 21, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2005math.....12370E" } } }