{ "id": "math/0512338", "version": "v2", "published": "2005-12-14T18:50:09.000Z", "updated": "2006-07-24T07:47:10.000Z", "title": "Finite orbits for rational functions", "authors": [ "J. K. Canci" ], "comment": "13 pages. Changed content", "categories": [ "math.NT", "math.DS" ], "abstract": "Let $K$ be a number field and $\\phi\\in K(z)$ a rational function. Let $S$ be the set of all archimedean places of $K$ and all non-archimedean places associated to the prime ideals of bad reduction for $\\phi$. We prove an upper bound for length of finite orbits of $\\phi$ in $\\mathbb{P}_1(K)$ depending only on the cardinality of $S$.", "revisions": [ { "version": "v2", "updated": "2006-07-24T07:47:10.000Z" } ], "analyses": { "subjects": [ "11G99", "14E05" ], "keywords": [ "rational function", "finite orbits", "upper bound", "number field", "prime ideals" ], "note": { "typesetting": "TeX", "pages": 13, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2005math.....12338C" } } }